Total No. of Questions : 8]	80	SEAT No. :
PA-1424		[Total No. of Pages : 2
	[5926]-40	

[5926]-40 T.E. (Civil)

DESIGN OF STEEL STRUCTURES (2019 Pattern) (Semester - I) (301003)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 Q.8.
- 2) Neat skeiches must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Take $f_{\nu} = 250$ and $f_{\nu} = 410$ grade of steel.
- 5) Take ultimate stress in bolt, $f_{ub} = 400 \text{ N/mm}^2$
- 6) Assume suitable data, if necessary.
- 7) Use of electronic pocket calculator, IS: 800-2007 and steel table are allowed.
- 8) Use of cell phone is prohibited in the examination hall.
- Q1) a) State and explain in brief type of column bases. [3]
 - b) Check the adequacy of ISHB 450 @ 85.4 kg/m to carry a factored axial load of 750 kN at an eccentricity of 270 mm about major axis. The effective length of column is 3 m. Consider only section strength. [14]
- Q2) a) Find buckling class of section ISHB 400 @ 77.4 kg/m used as a column.[3]
 - b) A column consist of section ISHB 350 @ 67.4 kg/m carries an axial compression factored load of 1700 kN. Design a suitable bolted gusseted base. The base is rest on M20 grade of concrete pedestal. Use 20 mm diameter bolts for the connection. [14]
- Q3) a) Explain in brief how lateral support is provided to the compression flange of beams with suitable sketches. [4]
 - b) A simply supported beam carries a uniformly distributed load of magnitude W kN/m on entire span of 6 m. The compression flange is *laterally unsupported* throughout the span. Find the intensity of uniformly distributed load the section ISMB 500 @ 89.6 kg/m can carry for the beam safely. Both ends of beam are fully estrained against torsion.[14]

OR

- **Q4)** a) Classify the section ISLB 500 @ 75.0 kg/m and ISA $100 \times 75 \times 8 \text{ mm}$ @ 10.5 kg/m used as a beam. [4]
 - b) Design a suitable I-section for a simply supported beam of span 6 m carrying a dead load 20 kN/m and live load 40 kN/m. The beam is *laterally supported* throughout the span. [14]

05) Determine panel point dead load, imposed load and wind load for a truss as shown in Figure 1. Assume design wind pressure as 1100 N/m², use G.I. Sheet and the centre to centre spacing of truss as 4 m. Assume self-weight of purlin 120 N/m. [17]

Figure 1

OR

- Q6) Design a gantry girder to be used in an industrial building carrying a manually operated overhead travelling crane, for the following data: [17]
 - Crane capacity 200 kN a)
 - Self-weight of the crane girder excluding trolley 200 kN b)
 - Self-weight of the trolley, electric motor, hook, etc. 40 kN c)
 - Minimum approach of the crane hook to the gantry girder 1.20 m d),
 - Wheel base 3.5 m e)
 - Span of crane girder 16 m f)
 - Span of gantry girder = 8 m g)
 - Self-weight of rail section 300 N/m h)
- Explain in brief IS provisions for length and spacing of intermittent weld.[4] **Q7**) a)
 - A Simply supported welded plate girder of span 30 m is subjected to b) uniformly distributed load 30 kN/m on whole span excluding self weight of plate girder. Design cross section of plate girder. Assume compression flange is laterally supported throughout the span.

OR

Q8) a) Explain in brief flange curtailment of plate girder.

b) A simply supported welded plate girder is designed for the span of 24 m. It is subjected to a shear force of 2300 kN and bending moment of 20700 kNm. A section used for plate girder to carry above load is as given below -[14]

Flanges - 780 mm wide and 50 mm thick

Web - 16 mm thick and 2600 mm deep

Design intermittent welded connection between flange and web. Also design end bearing stiffener.

